Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

E Alfonso Romero-Sandoval

Presbyterian College School of Pharmacy, USA

Title: Modulation of neuroimmune interactions using nanotechnology to prevent the development of chronic pain

Biography

Biography: E Alfonso Romero-Sandoval

Abstract

The interactions of glial cells (spinal cord) or macrophages (periphery) and neurons have been demonstrated to be signifi cant players in the mechanisms underlying chronic pain. We have identifi ed novel signaling pathways that physiologically regulate mitogen activated-protein kinases (MAPKs), namely MAP kinase phosphatases (MKPs) and CD163. We uncovered that both molecules seem to play signifi cant roles in microglial cells in the spinal cord, and in macrophages at the periphery in regulating the resolution of infl ammatory processes. We have observed that the lack of MKP-3 (KO mice) in spinal cord or the periphery results in the development of chronic pain following a surgical model of acute pain. Likewise, we have observed that the induction of MKPs or CD163 using nanotechnology in microglia or macrophages prevent the development of chronic pain,and induces an anti-infl ammatory phenotype by reducing the expression of p-p38 and p-ERK MAPKs. Our data uncovered that MKPs or CD163 molecules are suitable targets for gene therapies directed to prevent the development of chronic pain. Furthermore, we have demonstrated that specifi c nanoparticles with proven clinical relevance could be implemented to develop an innovative cell-directed gene therapy for chronic pain conditions.

Speaker Presentations